

 OpenTelemetry API

 v1.4.1

 Table of contents

 	Erlang/Elixir OpenTelemetry API

 	LICENSE

 	
 Modules

 	OpenTelemetry

 	opentelemetry

 	otel_attributes

 	otel_span

 	Context

 	OpenTelemetry.Ctx

 	otel_ctx

 	Baggage

 	OpenTelemetry.Baggage

 	otel_baggage

 	Tracer

 	OpenTelemetry.Span

 	OpenTelemetry.Tracer

 	otel_tracer

 	otel_tracer_noop

 	otel_tracer_provider

 	otel_tracestate

 	Propagators

 	otel_propagator

 	otel_propagator_b3

 	otel_propagator_b3multi

 	otel_propagator_b3single

 	otel_propagator_baggage

 	otel_propagator_text_map

 	otel_propagator_text_map_composite

 	otel_propagator_text_map_noop

 	otel_propagator_trace_context

Erlang/Elixir OpenTelemetry API

[image: EEF Observability WG project]
[image: Hex.pm]
This is the API portion of OpenTelemetry for Erlang
and Elixir Applications, implementing the API portion of the specification.
This is a library, it does not start any processes, and should be the only
OpenTelemetry dependency of Erlang/Elixir Applications.

 Use

There are both Erlang and Elixir macros that make use of the current module's
name to lookup a Named
Tracer
-- a Named Tracer is created for each Application loaded in the system at start
time -- for you and can be used for Trace and Span operations:
-include_lib("opentelemetry_api/include/otel_tracer.hrl").

some_fun() ->
 ?with_span(<<"some_fun/0">>, #{},
 fun(_SpanCtx) ->
 ...
 ?set_attribute(<<"key">>, <<"value">>),
 ...
 end),
require OpenTelemetry.Tracer

def some_fun() do
 OpenTelemetry.Tracer.with_span "some-span" do
 ...
 OpenTelemetry.Tracer.set_attribute("key", "value")
 ...
 end
end

 Tracing API

The macros and functions available for Elixir in OpenTelemetry.Tracer and the
Erlang macros in otel_tracer.hrl are the best way to work with Spans. They
will automatically use the Tracer named for the Application the module using the
macro is in. For example, the Spans created in
opentelemetry_oban use the
with_span macro resulting in the Span being created with the
opentelemetry_oban named Tracer and associated with the Instrumentation
Library
of the same name and version of the Tracer -- the version also matches the
opentelemetry_oban Application version.
Context
Context is used to pass values associated with the current execution
unit.
At this time the only values kept in the Context by this OpenTelemetry library
are the Span
Context
for the currently active Span and the
Baggage
When a Context variable is not an explicit argument in the API macros or
functions the Context from the process
dictionary
is used. If no Context is found in the current process's pdict then one is
created.
Starting and Ending Spans
A Span represents a single operation in a Trace. It has a start and end time,
can have a single parent and one or more children. The easiest way to create
Spans is to wrap the operation you want a Span to represent in the with_span
macro. The macro handles getting a
Tracer
associated with the OTP Application the module is in, starting the Span, setting
it as the currently active Span in the Context stored in the process dictionary
and ending the Span when the Fun or body of the Elixir macro finish, even if
an exception is thrown -- however, the exception is not caught, so it does not
change how user code should deal with raised exceptions. After the Span is
ended the Context in the process dictionary is reset to its value before the
newly started Span was set as the active Span. This handling of the active Span
in the process dictionary ensures proper lineage of Spans is kept when starting
and ending child Spans.
?with_span(SpanName, StartOpts, Fun)
OpenTelemetry.Tracer.with_span name, start_opts do
 ...
end
StartOpts/start_opts is a map of Span creation options:
	kind:
SpanKind
defines the relationship between the Span, its parents, and its children in a
Trace. Possible values: internal, server, client, producer and
consumer. Defaults to internal if not specified.
	attributes: See
Attributes
for details about Attributes. Default is an empty list of attributes.
	links: List of Links to causally related Spans from the same or a different Trace.
	start_time: The start time of the Span operation. Defaults to the current
time. The option should only be set if the start of the operation described by
the Span has already passed.

current_span_ctx(ctx)
set_current_span(span_ctx)
When using start_span instead of with_span there must be a corresponding
call to the end Span
API
to signal that the operation described by the Span has ended. end_span
optionally takes a timestamp to use as the end time of the Span.
?end_span()
?end_span(Timestamp)
OpenTelemetry.Tracer.end_span(timestamp \\ :undefined)
Sampling
Sampling is performed at span creation time by the Sampler configured on the Tracer, see Samplers.
To pass attributes for use by the sampler, use the attributes field of StartOpts/start_opts
example:
OpenTelemetry.Tracer.start_span(span_name, %{attributes: %{my_attribute: "my value"}})
Setting Attributes
Setting
Attributes
can be done with a single key and value passed to set_attribute or through a
map of
Attributes
all at once. Setting an attribute with a key that already exists in the Span's
map of attributes will result in that key's value being overwritten.
?set_attribute(Key, Value)
?set_attributes(Attributes)
OpenTelemetry.Tracer.set_attribute(key, value)
OpenTelemetry.Tracer.set_attributes(attributes)
Be aware that there are configurable limits on the number and size of
Attributes per Span.
Adding Events
Adding
Events
can be done by passing the name of the event and the
Attributes
to associate with it or as a list of Events. Each Event in the list of Events is
a map containing the timestamp, name, and Attributes which can be created with
the function event/2 and event/3 in the opentelemetry and OpenTelemetry
modules.
?add_event(Name, Attributes)
?add_events(Events)
OpenTelemetry.Tracer.add_event(event, attributes)
OpenTelemetry.Tracer.add_events(events)
Setting the Status
Set
Status
will override the default Span Status of Unset. A Status is a code (ok,
error or unset) and, only if the code is error, an optional message string
that describes the error.
?set_status(Code, Message)
OpenTelemetry.Tracer.set_status(code, message)
Update Span Name
Updating the Span
name
can be done after starting the Span but must be done before the Span is end'ed.
?update_name(Name)
OpenTelemetry.Tracer.update_name(name)

 Including the OpenTelemetry SDK

When only the API is available at runtime a no-op Tracer is used and no Traces
are exported. The OpenTelemetry SDK
provides the functionality of Tracers, Span Processors and Exporters and should
be included as part of a
Release and
not as a dependency of any individual Application.

 Exporters

Included in the same Github
repo as the API and SDK are an exporter for the OpenTelemetry Protocol
(OTLP)
and Zipkin:
	OpenTelemetry Protocol
	Zipkin

 Log Correlation

When a Span is made active in a process, for example when the with_span macro
is used, it is added to the logger
metadata. The
metadata is under the key otel_span_ctx. Example usage:
{kernel,
 [{logger_level, debug},
 {logger,
 [{handler, default, logger_std_h,
 #{formatter => {logger_formatter,
 #{template => [time, " ", file, ":", line, " ", level, ": ",
 {otel_trace_id, ["trace_id=",otel_trace_id," "], []},
 {otel_span_id, ["span_id=",otel_span_id," "], []},
 msg,"\n"]}}}}]}]}

 Integrations

Instrumentations of many popular Erlang and Elixir projects can be found in the
contrib repo
and on hex.pm under the OpenTelemetry organization.

 Contributing

Read OpenTelemetry project contributing
guide
for general information about the project.

LICENSE

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

 APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "[]"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.

 Copyright [yyyy] [name of copyright owner]

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

OpenTelemetry

An OpenTelemetry Trace consists of 1 or more Spans that either have a
parent/child relationship or are linked together through a Link. Each Span has a TraceId (trace_id/0),
SpanId (span_id/0), and a start and end time in nanoseconds.
This module provides declaration of the types used throughout the library, as well as functions for
building the additional pieces of a span that are optional. Each item can be attached to individual
Span using the functions in OpenTelemetry.Span module.

 Example

require OpenTelemetry.Tracer, as: Tracer

Tracer.with_span "some-span" do
 event = OpenTelemetry.event("ecto.query", query: query, total_time: total_time)
 Tracer.add_events([event])
end

 Summary

 Types

 attribute_key()

 attribute_value()

 attributes_map()

 Attributes are a collection of key/value pairs. The value can be a string,
an integer, a double or the boolean values true or false. Note, global attributes
like server name can be set using the resource API.

 event()

 An Event is a time-stamped annotation of the span, consisting of user-supplied
text description and key-value pairs.

 event_name()

 hex_span_id()

 Hex-encoded SpanId as a 16-character lowercase binary string.

 hex_trace_id()

 Hex-encoded TraceId as a 32-character lowercase binary string.

 link()

 A Link is a pointer from the current span to another span in the same trace or in a
different trace. For example, this can be used in batching operations,
where a single batch handler processes multiple requests from different
traces or when the handler receives a request from a different project.

 span()

 Span represents a single operation within a trace. Spans can be
nested to form a trace tree. Spans may also be linked to other spans
from the same or different trace and form graphs. Often, a trace
contains a root span that describes the end-to-end latency, and one
or more subspans for its sub-operations. A trace can also contain
multiple root spans, or none at all. Spans do not need to be
contiguous - there may be gaps or overlaps between spans in a trace.

 span_ctx()

 A SpanContext represents the portion of a Span needed to do operations on a
Span. Within a process it acts as a key for looking up and modifying the
actual Span. It is also what is serialized and propagated across process
boundaries.

 span_id()

 SpanId is a unique identifier for a span within a trace, assigned when the span
is created. The ID is an 8-byte array. An ID with all zeroes is considered
invalid.

 span_kind()

 span_name()

 status()

 An optional final status for this span. Semantically when Status
wasn't set it means span ended without errors and assume :unset.

 status_code()

 trace_id()

 TraceId is a unique identifier for a trace. All spans from the same trace share
the same trace_id. The ID is a 16-byte array. An ID with all zeroes
is considered invalid.

 tracestate()

 Tracestate represents tracing-system specific context in a list of key-value pairs.
Tracestate allows different vendors propagate additional information and
inter-operate with their legacy Id formats.

 Functions

 convert_timestamp(timestamp, unit)

 Convert a native monotonic timestamp to POSIX time of any :erlang.time_unit/0.
Meaning the time since Epoch. Epoch is defined to be 00:00:00 UTC, 1970-01-01.

 event(name, attributes)

 Creates a event/0.

 event(timestamp, name, attributes)

 Creates a event/0.

 events(event_list)

 Creates a list of event/0 items.

 get_tracer(name)

 See :opentelemetry.get_tracer/1.

 get_tracer(name, vsn, schema_url)

 See :opentelemetry.get_tracer/3.

 link(span_ctx)

 Creates a link/0 from a span_ctx/0.

 link(span_ctx, attributes)

 Creates a link/0 from a span_ctx/0 and list of attributes_map/0.

 link(trace_id, span_id, attributes, tracestate)

 Creates a link/0.

 links(link_list)

 Creates a list of link/0 from a list of 4-tuples.

 set_default_tracer(t)

 See :opentelemetry.set_default_tracer/1.

 status(code)

 Creates a Status with an empty description.

 status(code, message)

 Creates a Status.

 timestamp()

 A monotonically increasing time provided by the Erlang runtime system in the native time unit.
This value is the most accurate and precise timestamp available from the Erlang runtime and
should be used for finding durations or any timestamp that can be converted to a system
time before being sent to another system.

 timestamp_to_nano(timestamp)

 Convert a native monotonic timestamp to nanosecond POSIX time. Meaning the time since Epoch.
Epoch is defined to be 00:00:00 UTC, 1970-01-01.

 Types

 attribute_key()

 @type attribute_key() :: :opentelemetry.attribute_key()

 attribute_value()

 @type attribute_value() :: :opentelemetry.attribute_value()

 attributes_map()

 @type attributes_map() :: :opentelemetry.attributes_map()

Attributes are a collection of key/value pairs. The value can be a string,
an integer, a double or the boolean values true or false. Note, global attributes
like server name can be set using the resource API.
Examples of attributes:
[{"/http/user_agent" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/71.0.3578.98 Safari/537.36"}
 {"/http/server_latency", 300}
 {"abc.com/myattribute", True}
 {"abc.com/score", 10.239}]

 event()

 @type event() :: :opentelemetry.event()

An Event is a time-stamped annotation of the span, consisting of user-supplied
text description and key-value pairs.

 event_name()

 @type event_name() :: :opentelemetry.event_name()

 hex_span_id()

 @type hex_span_id() :: :opentelemetry.hex_span_id()

Hex-encoded SpanId as a 16-character lowercase binary string.

 hex_trace_id()

 @type hex_trace_id() :: :opentelemetry.hex_trace_id()

Hex-encoded TraceId as a 32-character lowercase binary string.

 link()

 @type link() :: :opentelemetry.link()

A Link is a pointer from the current span to another span in the same trace or in a
different trace. For example, this can be used in batching operations,
where a single batch handler processes multiple requests from different
traces or when the handler receives a request from a different project.

 span()

 @type span() :: :opentelemetry.span()

Span represents a single operation within a trace. Spans can be
nested to form a trace tree. Spans may also be linked to other spans
from the same or different trace and form graphs. Often, a trace
contains a root span that describes the end-to-end latency, and one
or more subspans for its sub-operations. A trace can also contain
multiple root spans, or none at all. Spans do not need to be
contiguous - there may be gaps or overlaps between spans in a trace.

 span_ctx()

 @type span_ctx() :: :opentelemetry.span_ctx()

A SpanContext represents the portion of a Span needed to do operations on a
Span. Within a process it acts as a key for looking up and modifying the
actual Span. It is also what is serialized and propagated across process
boundaries.

 span_id()

 @type span_id() :: non_neg_integer()

SpanId is a unique identifier for a span within a trace, assigned when the span
is created. The ID is an 8-byte array. An ID with all zeroes is considered
invalid.

 span_kind()

 @type span_kind() :: :opentelemetry.span_kind()

 span_name()

 @type span_name() :: :opentelemetry.span_name()

 status()

 @type status() :: :opentelemetry.status()

An optional final status for this span. Semantically when Status
wasn't set it means span ended without errors and assume :unset.
Application developers may set the status as :ok when the operation
has been validated to have completed successfully, or :error when
the operation contains an error.

 status_code()

 @type status_code() :: :opentelemetry.status_code()

 trace_id()

 @type trace_id() :: non_neg_integer()

TraceId is a unique identifier for a trace. All spans from the same trace share
the same trace_id. The ID is a 16-byte array. An ID with all zeroes
is considered invalid.

 tracestate()

 @type tracestate() :: :opentelemetry.tracestate()

Tracestate represents tracing-system specific context in a list of key-value pairs.
Tracestate allows different vendors propagate additional information and
inter-operate with their legacy Id formats.
It is a tracestate in the w3c-trace-context format.
See also https://github.com/w3c/distributed-tracing
for more details about this field.

 Functions

 convert_timestamp(timestamp, unit)

 @spec convert_timestamp(integer(), :erlang.time_unit()) :: integer()

Convert a native monotonic timestamp to POSIX time of any :erlang.time_unit/0.
Meaning the time since Epoch. Epoch is defined to be 00:00:00 UTC, 1970-01-01.

 event(name, attributes)

 @spec event(event_name(), attributes_map()) :: event()

Creates a event/0.

 event(timestamp, name, attributes)

 @spec event(integer(), event_name(), attributes_map()) :: event()

Creates a event/0.

 events(event_list)

 @spec events(list()) :: [event()]

Creates a list of event/0 items.

 get_tracer(name)

See :opentelemetry.get_tracer/1.

 get_tracer(name, vsn, schema_url)

See :opentelemetry.get_tracer/3.

 link(span_ctx)

 @spec link(span_ctx() | :undefined) :: link()

Creates a link/0 from a span_ctx/0.

 link(span_ctx, attributes)

 @spec link(span_ctx() | :undefined, attributes_map()) :: link()

Creates a link/0 from a span_ctx/0 and list of attributes_map/0.

 link(trace_id, span_id, attributes, tracestate)

 @spec link(trace_id(), span_id(), attributes_map(), tracestate()) :: link()

Creates a link/0.

 links(link_list)

 @spec links([
 {integer(), integer(), attributes_map(), tracestate()}
 | span_ctx()
 | {span_ctx(), attributes_map()}
]) :: [link()]

Creates a list of link/0 from a list of 4-tuples.

 set_default_tracer(t)

See :opentelemetry.set_default_tracer/1.

 status(code)

 @spec status(:opentelemetry.status_code()) :: status()

Creates a Status with an empty description.

 status(code, message)

 @spec status(:opentelemetry.status_code(), String.t()) :: status()

Creates a Status.

 timestamp()

 @spec timestamp() :: integer()

A monotonically increasing time provided by the Erlang runtime system in the native time unit.
This value is the most accurate and precise timestamp available from the Erlang runtime and
should be used for finding durations or any timestamp that can be converted to a system
time before being sent to another system.
Use convert_timestamp/2 or timestamp_to_nano/1 to convert a native monotonic time to a
system time of either nanoseconds or another unit.
Using these functions allows timestamps to be accurate, used for duration and be exportable
as POSIX time when needed.

 timestamp_to_nano(timestamp)

 @spec timestamp_to_nano(integer()) :: integer()

Convert a native monotonic timestamp to nanosecond POSIX time. Meaning the time since Epoch.
Epoch is defined to be 00:00:00 UTC, 1970-01-01.

opentelemetry

The types defined here, and referencing records in opentelemetry.hrl are used to store trace information while being collected on the Erlang node.
Thus, while the types are based on protos found in the opentelemetry-proto repo: src/opentelemetry/proto/trace/v1/trace.proto, they are not exact translations because further processing is done after the span has finished and can be vendor specific. For example, there is no count of the number of dropped attributes in the span record. And an attribute's value can be a function to only evaluate the value if it is actually used (at the time of exporting). And the stacktrace is a regular Erlang stack trace.

 Summary

 Types

 attribute/0

 attribute_key/0

 attribute_value/0

 attributes_map/0

 event/0

 event_name/0

 hex_span_id/0

 hex_trace_id/0

 instrumentation_scope/0

 link/0

 resource/0

 span/0

 span_ctx/0

 span_id/0

 span_kind/0

 span_name/0

 status/0

 status_code/0

 text_map/0

 timestamp/0

 trace_flags/0

 trace_id/0

 tracer/0

 tracestate/0

 Functions

 convert_timestamp(Timestamp, Unit)

 Convert a native monotonic timestamp to POSIX time of any erlang:time_unit(). Meaning the time since Epoch. Epoch is defined to be 00:00:00 UTC, 1970-01-01.

 create_application_tracers(Applications)

 event(Name, Attributes)

 Equivalent to event(opentelemetry:timestamp(), Name, Attributes).

 event(Timestamp, Name, Attributes)

 Creates a Span event with the given Name and Attributes.

 events(Events)

 Creates a list of Span events from the given List.

 get_application(ModuleName)

 get_application_scope(ModuleName)

 get_application_tracer(ModuleName)

 get_text_map_extractor()

 get_text_map_injector()

 get_tracer()

 Returns the default global tracer.

 get_tracer(Name)

 Returns the tracer for the given name.

 get_tracer(Name, Vsn, SchemaUrl)

 Equivalent to get_tracer({Name, Vsn, SchemaUrl}).

 instrumentation_library(Name, Vsn, SchemaUrl)

 instrumentation_scope(Name, Vsn, SchemaUrl)

 link(SpanCtx)

 Equivalent to link(SpanCtx, []).

 link(SpanCtx, Attributes)

 Creates a Span link to the Span represented by the given SpanCtx.

 link(TraceId, SpanId, Attributes, TraceState)

 Creates a Span link to the Span represented by the given TraceId and SpanId.

 links(List)

 Creates a list of Span links from the given List.

 set_default_tracer(Tracer)

 set_default_tracer(TracerProvider, Tracer)

 set_text_map_extractor(Propagator)

 set_text_map_injector(Propagator)

 set_text_map_propagator(Propagator)

 set_tracer(Name, Tracer)

 start_tracer_provider(Name, Config)

 deprecated

 status(Code)

 Create a Span status from the given Code.

 status(Code, Message)

 Create a Span status from the given Code and with the given Message.

 timestamp()

 A monotonically increasing time provided by the Erlang runtime system in the native time unit. This value is the most accurate and precise timestamp available from the Erlang runtime and should be used for finding durations or any timestamp that can be converted to a system time before being sent to another system.

 timestamp_to_nano(Timestamp)

 Convert a native monotonic timestamp to nanosecond POSIX time. Meaning the time since Epoch. Epoch is defined to be 00:00:00 UTC, 1970-01-01.

 Types

 attribute/0

 -type attribute() :: {attribute_key(), attribute_value()}.

 attribute_key/0

 -type attribute_key() :: unicode:unicode_binary() | atom().

 attribute_value/0

 -type attribute_value() ::
 unicode:unicode_binary() |
 atom() |
 number() |
 boolean() |
 [unicode:unicode_binary() | atom() | float() | integer() | boolean()] |
 tuple().

 attributes_map/0

 -type attributes_map() :: #{attribute_key() => attribute_value()} | [attribute()].

 event/0

 -type event() ::
 #{system_time_native => integer(), name := event_name(), attributes := attributes_map()}.

 event_name/0

 -type event_name() :: unicode:unicode_binary() | atom().

 hex_span_id/0

 -type hex_span_id() :: binary().

 hex_trace_id/0

 -type hex_trace_id() :: binary().

 instrumentation_scope/0

 -type instrumentation_scope() ::
 #instrumentation_scope{name :: unicode:unicode_binary() | undefined,
 version :: unicode:unicode_binary() | undefined,
 schema_url :: uri_string:uri_string() | undefined}.

 link/0

 -type link() ::
 #{trace_id := trace_id(),
 span_id := span_id(),
 attributes := attributes_map(),
 tracestate := otel_tracestate:t()}.

 resource/0

 -type resource() :: #{unicode:unicode_binary() => unicode:unicode_binary()}.

 span/0

 -type span() :: term().

 span_ctx/0

 -type span_ctx() ::
 #span_ctx{trace_id :: opentelemetry:trace_id(),
 span_id :: opentelemetry:span_id(),
 trace_flags :: integer(),
 tracestate :: otel_tracestate:t(),
 is_valid :: boolean() | undefined,
 is_remote :: boolean(),
 is_recording :: boolean() | undefined,
 span_sdk :: {module(), term()} | undefined}.

 span_id/0

 -type span_id() :: non_neg_integer().

 span_kind/0

 -type span_kind() :: internal | server | client | producer | consumer.

 span_name/0

 -type span_name() :: unicode:unicode_binary() | atom().

 status/0

 -type status() :: #status{code :: opentelemetry:status_code(), message :: unicode:unicode_binary()}.

 status_code/0

 -type status_code() :: unset | ok | error.

 text_map/0

 -type text_map() :: [{unicode:unicode_binary(), unicode:unicode_binary()}].

 timestamp/0

 -type timestamp() :: integer().

 trace_flags/0

 -type trace_flags() :: non_neg_integer().

 trace_id/0

 -type trace_id() :: non_neg_integer().

 tracer/0

 -type tracer() :: {module(), term()}.

 tracestate/0

 -type tracestate() :: otel_tracestate:t().

 Functions

 convert_timestamp(Timestamp, Unit)

 -spec convert_timestamp(timestamp(), erlang:time_unit()) -> integer().

Convert a native monotonic timestamp to POSIX time of any erlang:time_unit(). Meaning the time since Epoch. Epoch is defined to be 00:00:00 UTC, 1970-01-01.

 create_application_tracers(Applications)

 -spec create_application_tracers([{Application, Description, Vsn}]) -> ok
 when Application :: atom(), Description :: string(), Vsn :: string().

 event(Name, Attributes)

 -spec event(Name, Attributes) -> event() | undefined
 when Name :: event_name(), Attributes :: attributes_map().

Equivalent to event(opentelemetry:timestamp(), Name, Attributes).

 event(Timestamp, Name, Attributes)

 -spec event(Timestamp, Name, Attributes) -> event() | undefined
 when Timestamp :: integer(), Name :: event_name(), Attributes :: attributes_map().

Creates a Span event with the given Name and Attributes.
The Span event is marked to have happened at Timestamp. The returned event can be used to add an event to a Span through otel_span:add_events/2, for example.

 events(Events)

 -spec events([Event]) -> [event()]
 when
 Event ::
 {Timestamp :: integer(), event_name(), attributes_map()} |
 {event_name(), attributes_map()}.

Creates a list of Span events from the given List.
This is a convenience function to create a list of Span events from a list of {Time, Name, Attributes} or {Name, Attributes} tuples. It's equivalent to calling event/2 or event/3 multiple times. This function also automatically filters out any invalid tuple.

 get_application(ModuleName)

 -spec get_application(module()) -> ApplicationTuple
 when
 ApplicationTuple :: {Name, Vsn, SchemaUrl} | atom(),
 Name :: atom(),
 Vsn :: unicode:unicode_binary() | undefined,
 SchemaUrl :: uri_string:uri_string() | undefined.

 get_application_scope(ModuleName)

 -spec get_application_scope(module()) -> instrumentation_scope() | undefined.

 get_application_tracer(ModuleName)

 -spec get_application_tracer(module()) -> tracer().

 get_text_map_extractor()

 get_text_map_injector()

 get_tracer()

 -spec get_tracer() -> tracer().

Returns the default global tracer.
Without the opentelemetry application loaded (as a dependency) and started (or another SDK), this function returns the default value {otel_tracer_noop, []}.

 get_tracer(Name)

 -spec get_tracer(Name) -> Tracer
 when
 Name :: atom() | {atom(), Vsn, SchemaUrl},
 Vsn :: unicode:chardata() | undefined,
 SchemaUrl :: uri_string:uri_string() | undefined,
 Tracer :: opentelemetry:tracer().

Returns the tracer for the given name.
Passing {Name, Vsn, SchemaUrl} is the same as calling get_tracer(Name, Vsn, SchemaUrl).
See also: get_tracer/3.

 get_tracer(Name, Vsn, SchemaUrl)

 -spec get_tracer(Name, Vsn, SchemaUrl) -> Tracer
 when
 Name :: atom(),
 Vsn :: unicode:chardata() | undefined,
 SchemaUrl :: uri_string:uri_string() | undefined,
 Tracer :: opentelemetry:tracer().

Equivalent to get_tracer({Name, Vsn, SchemaUrl}).

 instrumentation_library(Name, Vsn, SchemaUrl)

 instrumentation_scope(Name, Vsn, SchemaUrl)

 link(SpanCtx)

 -spec link(span_ctx() | undefined) -> link() | undefined.

Equivalent to link(SpanCtx, []).

 link(SpanCtx, Attributes)

 -spec link(span_ctx() | undefined, attributes_map()) -> link() | undefined.

Creates a Span link to the Span represented by the given SpanCtx.
The returned link can be used in the links field of a Span.

 link(TraceId, SpanId, Attributes, TraceState)

 -spec link(TraceId, SpanId, Attributes, TraceState) -> link() | undefined
 when
 TraceId :: trace_id(),
 SpanId :: span_id(),
 Attributes :: attributes_map(),
 TraceState :: otel_tracestate:t().

Creates a Span link to the Span represented by the given TraceId and SpanId.
The returned link can be used in the links field of a Span.

 links(List)

 -spec links([TraceIdAndSpanId | span_ctx() | {span_ctx(), Attributes}]) -> [link()]
 when
 TraceIdAndSpanId :: {trace_id(), span_id(), Attributes, TraceState},
 Attributes :: attributes_map(),
 TraceState :: otel_tracestate:t() | [{string(), string()}].

Creates a list of Span links from the given List.
This is equivalent to calling link/2 or link/4 multiple times.

 set_default_tracer(Tracer)

 -spec set_default_tracer(tracer()) -> boolean().

 set_default_tracer(TracerProvider, Tracer)

 -spec set_default_tracer(atom(), tracer()) -> boolean().

 set_text_map_extractor(Propagator)

 set_text_map_injector(Propagator)

 set_text_map_propagator(Propagator)

 set_tracer(Name, Tracer)

 -spec set_tracer(atom(), tracer()) -> boolean().

 start_tracer_provider(Name, Config)

 This function is deprecated. Start the TracerProvider through the SDK".

 -spec start_tracer_provider(atom(), map()) -> {ok, pid() | undefined} | {error, term()}.

 status(Code)

 -spec status(Code) -> status() | undefined when Code :: status_code().

Create a Span status from the given Code.
The returned status can be used to set the status of a Span through otel_span:set_status/2, for example.

 status(Code, Message)

 -spec status(Code, Message) -> status() | undefined
 when Code :: status_code(), Message :: unicode:unicode_binary().

Create a Span status from the given Code and with the given Message.
The returned status can be used to set the status of a Span through otel_span:set_status/2, for example.

 timestamp()

 -spec timestamp() -> integer().

A monotonically increasing time provided by the Erlang runtime system in the native time unit. This value is the most accurate and precise timestamp available from the Erlang runtime and should be used for finding durations or any timestamp that can be converted to a system time before being sent to another system.

 timestamp_to_nano(Timestamp)

 -spec timestamp_to_nano(timestamp()) -> pos_integer().

Convert a native monotonic timestamp to nanosecond POSIX time. Meaning the time since Epoch. Epoch is defined to be 00:00:00 UTC, 1970-01-01.

otel_attributes

Functions to work with Attributes.
An Attribute is a key-value pair with string or atom keys. See the specification.

 Summary

 Types

 t/0

 Functions

 dropped(Attributes)

 Returns the count of dropped attributes in the given Attributes.

 is_valid_attribute(Key, Value)

 Checks whether the given key-value pair makes for a valid attribute.

 map(Attributes)

 Returns the Attributes in the form of a map.

 new(Pairs, CountLimit, ValueLengthLimit)

 Creates a new Attributes from Pairs with the given count and value length limits.

 set(NewListOrMap, Attributes)

 Sets the given key-value pairs in the given Attributes. Overrides the existing value for a given key if it already exists in Attributes.

 set(Key, Value, Attributes)

 Sets the given key-value pair in the given Attributes.

 Types

 t/0

 -type t() ::
 #attributes{count_limit :: integer(),
 value_length_limit :: integer() | infinity,
 dropped :: integer(),
 map :: map()}.

 Functions

 dropped(Attributes)

Returns the count of dropped attributes in the given Attributes.

 is_valid_attribute(Key, Value)

 -spec is_valid_attribute(opentelemetry:attribute_key(), opentelemetry:attribute_value()) -> boolean().

Checks whether the given key-value pair makes for a valid attribute.
For example:
 otel_attributes:is_valid_attribute(<<"key">>, <<"value">>).
 %=> true

 otel_attributes:is_valid_attribute(atom_key, <<"value">>).
 %=> true

 otel_attributes:is_valid_attribute(123, <<"value">>).
 %=> false

 map(Attributes)

 -spec map(t()) -> map().

Returns the Attributes in the form of a map.
For example:
 otel_attributes:new([], 10, 10),
 otel_attributes:set(<<"key">>, <<"value">>, Attributes),
 otel_attributes:map(Attributes).
 %=> #{<<"key">> => <<"value">>}

 new(Pairs, CountLimit, ValueLengthLimit)

 -spec new([opentelemetry:attribute()] | opentelemetry:attributes_map(), integer(), integer() | infinity) ->
 t().

Creates a new Attributes from Pairs with the given count and value length limits.
Pairs can be a list of key-value pairs or a map. If Pairs is not a list or map, the function returns an empty Attributes.

 set(NewListOrMap, Attributes)

 -spec set([opentelemetry:attribute()] | opentelemetry:attributes_map(), t()) -> t().

Sets the given key-value pairs in the given Attributes. Overrides the existing value for a given key if it already exists in Attributes.
NewListOrMap can be a list of key-value pairs or a map. If NewListOrMap is not a list or map, the function returns Attributes as is. Returns the updated Attributes.

 set(Key, Value, Attributes)

 -spec set(opentelemetry:attribute_key(), opentelemetry:attribute_value(), t()) -> t().

Sets the given key-value pair in the given Attributes.
Overrides the existing value under Key if Key already exists. Returns the updated Attributes.

otel_span

Span behaviour.

 Summary

 Types

 start_config/0

 Start options for a span.

 start_opts/0

 Functions

 add_event(SpanCtx, Name, Attributes)

 Adds an event to the given span context.

 add_events(SpanCtx, Events)

 Same as add_event/3, but takes a list of events.

 end_span(SpanCtx)

 Ends the given span context.

 end_span(SpanCtx, Timestamp)

 Ends the given span context with the given timestamp.

 hex_span_ctx(SpanCtx)

 hex_span_id(Span_ctx)

 hex_trace_id(Span_ctx)

 is_recording(SpanCtx)

 Returns whether the span is recording.

 is_valid(SpanCtx)

 Returns whether the span context is valid.

 record_exception(SpanCtx, Class, Term, Stacktrace, Attributes)

 record_exception(SpanCtx, Class, Term, Message, Stacktrace, Attributes)

 set_attribute(SpanCtx, Key, Value)

 set_attributes(SpanCtx, Attributes)

 set_status(SpanCtx, StatusOrCode)

 set_status(SpanCtx, Code, Message)

 span_id(Span_ctx)

 Returns the span ID of the given span context.

 trace_id(Span_ctx)

 Returns the trace ID of the given span context.

 tracestate(Span_ctx)

 update_name(SpanCtx, Name)

 Updates the name of the given span context to Name.

 validate_start_opts(Opts)

 Validates the start options for a span and fills in defaults.

 Types

 start_config/0

 -type start_config() ::
 #{attributes := opentelemetry:attributes_map(),
 links := [opentelemetry:link()],
 is_recording := boolean(),
 start_time := opentelemetry:timestamp(),
 kind := opentelemetry:span_kind()}.

Start options for a span.

 start_opts/0

 -type start_opts() ::
 #{attributes => opentelemetry:attributes_map(),
 links => [opentelemetry:link()],
 is_recording => boolean(),
 start_time => opentelemetry:timestamp(),
 kind => opentelemetry:span_kind()}.

 Functions

 add_event(SpanCtx, Name, Attributes)

 -spec add_event(SpanCtx, Name, Attributes) -> boolean()
 when
 Name :: opentelemetry:event_name(),
 Attributes :: opentelemetry:attributes_map(),
 SpanCtx :: opentelemetry:span_ctx().

Adds an event to the given span context.
Returns false if the given span context is not recording, or if the event Name is not valid.

 add_events(SpanCtx, Events)

 -spec add_events(SpanCtx, Events) -> boolean()
 when Events :: [opentelemetry:event()], SpanCtx :: opentelemetry:span_ctx().

Same as add_event/3, but takes a list of events.
Returns false if the given span context is not recording.

 end_span(SpanCtx)

 -spec end_span(SpanCtx) -> SpanCtx when SpanCtx :: opentelemetry:span_ctx().

Ends the given span context.
If SpanCtx is not recording, this function doesn't do anything. Returns the updated span context.

 end_span(SpanCtx, Timestamp)

 -spec end_span(SpanCtx, Timestamp) -> SpanCtx
 when SpanCtx :: opentelemetry:span_ctx(), Timestamp :: integer() | undefined.

Ends the given span context with the given timestamp.
If SpanCtx is not recording, this function doesn't do anything. If Timestamp is undefined, this is equivalent to end_span/1. Returns the updated span context.

 hex_span_ctx(SpanCtx)

 -spec hex_span_ctx(opentelemetry:span_ctx() | undefined) ->
 #{otel_trace_id := opentelemetry:hex_trace_id(),
 otel_span_id := opentelemetry:hex_span_id(),
 otel_trace_flags := binary()} |
 #{}.

 hex_span_id(Span_ctx)

 -spec hex_span_id(opentelemetry:span_ctx()) -> opentelemetry:hex_span_id().

 hex_trace_id(Span_ctx)

 -spec hex_trace_id(opentelemetry:span_ctx()) -> opentelemetry:hex_trace_id().

 is_recording(SpanCtx)

 -spec is_recording(SpanCtx) -> boolean() when SpanCtx :: opentelemetry:span_ctx() | undefined.

Returns whether the span is recording.

 is_valid(SpanCtx)

 -spec is_valid(SpanCtx) -> boolean() when SpanCtx :: opentelemetry:span_ctx().

Returns whether the span context is valid.

 record_exception(SpanCtx, Class, Term, Stacktrace, Attributes)

 -spec record_exception(SpanCtx, Class, Term, Stacktrace, Attributes) -> boolean()
 when
 SpanCtx :: opentelemetry:span_ctx(),
 Class :: atom(),
 Term :: term(),
 Stacktrace :: [any()],
 Attributes :: opentelemetry:attributes_map().

 record_exception(SpanCtx, Class, Term, Message, Stacktrace, Attributes)

 -spec record_exception(SpanCtx, Class, Term, Message, Stacktrace, Attributes) -> boolean()
 when
 SpanCtx :: opentelemetry:span_ctx(),
 Class :: atom(),
 Term :: term(),
 Message :: unicode:unicode_binary(),
 Stacktrace :: [any()],
 Attributes :: opentelemetry:attributes_map().

 set_attribute(SpanCtx, Key, Value)

 -spec set_attribute(SpanCtx, Key, Value) -> boolean()
 when
 Key :: opentelemetry:attribute_key(),
 Value :: opentelemetry:attribute_value(),
 SpanCtx :: opentelemetry:span_ctx().

 set_attributes(SpanCtx, Attributes)

 -spec set_attributes(SpanCtx, Attributes) -> boolean()
 when
 Attributes :: opentelemetry:attributes_map(),
 SpanCtx :: opentelemetry:span_ctx().

 set_status(SpanCtx, StatusOrCode)

 -spec set_status(SpanCtx, StatusOrCode) -> boolean()
 when
 StatusOrCode :: opentelemetry:status() | undefined | opentelemetry:status_code(),
 SpanCtx :: opentelemetry:span_ctx().

 set_status(SpanCtx, Code, Message)

 -spec set_status(SpanCtx, Code, Message) -> boolean()
 when
 Code :: opentelemetry:status_code(),
 Message :: unicode:unicode_binary(),
 SpanCtx :: opentelemetry:span_ctx().

 span_id(Span_ctx)

 -spec span_id(opentelemetry:span_ctx()) -> opentelemetry:span_id().

Returns the span ID of the given span context.

 trace_id(Span_ctx)

 -spec trace_id(opentelemetry:span_ctx()) -> opentelemetry:trace_id().

Returns the trace ID of the given span context.

 tracestate(Span_ctx)

 -spec tracestate(opentelemetry:span_ctx() | undefined) -> otel_tracestate:t().

 update_name(SpanCtx, Name)

 -spec update_name(SpanCtx, Name) -> boolean()
 when Name :: opentelemetry:span_name(), SpanCtx :: opentelemetry:span_ctx().

Updates the name of the given span context to Name.
Returns false if the given span context is not recording, or if the name Name is not valid.

 validate_start_opts(Opts)

 -spec validate_start_opts(start_opts()) -> start_config().

Validates the start options for a span and fills in defaults.

OpenTelemetry.Ctx

Ctx is responsible for propagating values within a process that are associated
with a particular Trace or set of Baggage. OpenTelemetry.Tracer and
OpenTelemetry.Baggage handle updating the Context.

 Summary

 Types

 t()

 Functions

 attach(ctx)

 See :otel_ctx.attach/1.

 clear()

 See :otel_ctx.clear/0.

 detach(token)

 See :otel_ctx.detach/1.

 get_current()

 See :otel_ctx.get_current/0.

 get_value(key, default)

 See :otel_ctx.get_value/2.

 get_value(ctx, key, default)

 See :otel_ctx.get_value/3.

 new()

 See :otel_ctx.new/0.

 remove(key)

 See :otel_ctx.remove/1.

 set_value(key, value)

 See :otel_ctx.set_value/2.

 set_value(ctx, key, value)

 See :otel_ctx.set_value/3.

 Types

 t()

 @type t() :: :otel_ctx.t()

 Functions

 attach(ctx)

See :otel_ctx.attach/1.

 clear()

See :otel_ctx.clear/0.

 detach(token)

See :otel_ctx.detach/1.

 get_current()

See :otel_ctx.get_current/0.

 get_value(key, default)

See :otel_ctx.get_value/2.

 get_value(ctx, key, default)

See :otel_ctx.get_value/3.

 new()

See :otel_ctx.new/0.

 remove(key)

See :otel_ctx.remove/1.

 set_value(key, value)

See :otel_ctx.set_value/2.

 set_value(ctx, key, value)

See :otel_ctx.set_value/3.

otel_ctx

Ctx is responsible for propagating values within a process that are associated with a particular Trace or set of Baggage. OpenTelemetry.Tracer and OpenTelemetry.Baggage handle updating the Context.
Functions in this module include variants that explicitly take a Ctx argument and variants that implicitly use the current context, which is the context stored in the process dictionary.

 Summary

 Types

 key/0

 A context key.

 t/0

 A context map.

 token/0

 An opaque token that represents a context.

 value/0

 A context value.

 Functions

 attach(Ctx)

 Attaches the given context to the current process.

 clear()

 Removes all key-value pairs from the current context.

 clear(Ctx)

 Removes all key-value pairs from the given context.

 detach(Token)

 Detaches the given context from the current process.

 get_current()

 Returns the current context.

 get_value(Key)

 Gets a value from the current context under the given key.

 get_value(Key, Default)

 Gets a value from the current context under the given key, or returns the default value if the key is not present in the current context.

 get_value(Ctx, Key, Default)

 Gets a value from the given context under the given key, or returns the default value if the key is not present in the given context or if Ctx is undefined.

 new()

 Creates a new context.

 remove(Key)

 Removes the value under the given key from the current context.

 remove(Ctx, Key)

 Removes the value under the given key from the given context.

 set_value(Key, Value)

 Sets a value in the current context under the given key.

 set_value(Ctx, Key, Value)

 Sets a value in the given context under the given key.

 with_ctx(Ctx, Fun)

 Attaches a context and runs a function, detaching the context at the end.

 Types

 key/0

 -type key() :: term().

A context key.

 t/0

 -type t() :: map() | undefined.

A context map.

 token/0

 -opaque token()

An opaque token that represents a context.

 value/0

 -type value() :: term().

A context value.

 Functions

 attach(Ctx)

 -spec attach(t()) -> token().

Attaches the given context to the current process.
Essentially, this sets Ctx as the current context .

 clear()

 -spec clear() -> ok.

Removes all key-value pairs from the current context.

 clear(Ctx)

 -spec clear(t()) -> t().

Removes all key-value pairs from the given context.
Returns an empty context.

 detach(Token)

 -spec detach(token()) -> t() | undefined.

Detaches the given context from the current process.

 get_current()

 -spec get_current() -> map().

Returns the current context.

 get_value(Key)

 -spec get_value(term()) -> eqwalizer:dynamic().

Gets a value from the current context under the given key.

 get_value(Key, Default)

 -spec get_value(term(), term()) -> eqwalizer:dynamic().

Gets a value from the current context under the given key, or returns the default value if the key is not present in the current context.

 get_value(Ctx, Key, Default)

 -spec get_value(t(), term(), term()) -> eqwalizer:dynamic().

Gets a value from the given context under the given key, or returns the default value if the key is not present in the given context or if Ctx is undefined.

 new()

 -spec new() -> t().

Creates a new context.

 remove(Key)

 -spec remove(term()) -> ok.

Removes the value under the given key from the current context.

 remove(Ctx, Key)

 -spec remove(t(), term()) -> t().

Removes the value under the given key from the given context.
Returns the updated context.

 set_value(Key, Value)

 -spec set_value(term(), term()) -> ok.

Sets a value in the current context under the given key.

 set_value(Ctx, Key, Value)

 -spec set_value(t(), term(), term()) -> t().

Sets a value in the given context under the given key.
Returns the updated context.

 with_ctx(Ctx, Fun)

 -spec with_ctx(t(), fun(() -> term())) -> {term(), t()}.

Attaches a context and runs a function, detaching the context at the end.
Returns the detached context.

OpenTelemetry.Baggage

Baggage is used to annotate telemetry, adding context and information to
metrics, traces, and logs. It is represented by a set of name/value pairs
describing user-defined properties.

 Summary

 Functions

 clear()

 See :otel_baggage.clear/0.

 clear(ctx)

 See :otel_baggage.clear/1.

 get_all()

 See :otel_baggage.get_all/0.

 get_all(ctx)

 See :otel_baggage.get_all/1.

 set(keyvalues)

 See :otel_baggage.set/1.

 set(ctx_or_key, keyvalues)

 See :otel_baggage.set/2.

 set(ctx, key, value)

 See :otel_baggage.set/3.

 set(ctx, key, values, metadata)

 See :otel_baggage.set/4.

 Functions

 clear()

See :otel_baggage.clear/0.

 clear(ctx)

See :otel_baggage.clear/1.

 get_all()

See :otel_baggage.get_all/0.

 get_all(ctx)

See :otel_baggage.get_all/1.

 set(keyvalues)

See :otel_baggage.set/1.

 set(ctx_or_key, keyvalues)

See :otel_baggage.set/2.

 set(ctx, key, value)

See :otel_baggage.set/3.

 set(ctx, key, values, metadata)

See :otel_baggage.set/4.

otel_baggage

Baggage is used to annotate telemetry, adding context and information to metrics, traces, and logs. It is represented by a set of name/value pairs describing user-defined properties.
The baggage can be stored either in the current context (with set/1 or set/3, for example) or in an explicit Context (see otel_ctx).

 Summary

 Types

 input_key/0

 An input key, that is, a key that is then converted to a UTF-8 binary.

 input_value/0

 An input value, that is, a value that is then converted to a UTF-8 binary.

 key/0

 The type for the baggage key, which is a UTF-8 binary.

 metadata/0

 The type for the baggage metadata, which is a list of UTF-8 binaries or a list of tuples of UTF-8 binaries (as key-value pairs).

 t/0

 The type for the baggage.

 value/0

 The type for the baggage value, which is a UTF-8 binary.

 Functions

 clear()

 Clears the baggage, removing all the current key-value pairs.

 clear(Ctx)

 Clears the baggage for the given context, removing all the current key-value pairs.

 get_all()

 Returns the baggage from the process dictionary.

 get_all(Ctx)

 Returns the baggage for the given context.

 set(KeyValues)

 Sets the given key-value pairs in the current baggage.

 set(Key, Value)

 Sets the given key-value pair in the current baggage, or sets the given key-value pairs in the baggage for the given context.

 set(Key, Value, Metadata)

 Sets the given key-value pair in the current baggage (with the associated metadata), or sets the given key-value pair in the baggage for the given context.

 set(Ctx, Key, Value, Metadata)

 Sets the given key-value pair in the baggage for the given context, with the associated metadata.

 set_to(Ctx, KeyValues)

 Sets the given key-value pairs in the baggage for the given context.

 set_to(Ctx, Key, Value)

 Sets the given key-value pair in the baggage for the given context.

 set_to(Ctx, Key, Value, Metadata)

 Sets the given key-value pair in the baggage for the given context, with the associated metadata.

 Types

 input_key/0

 -type input_key() :: key() | unicode:charlist().

An input key, that is, a key that is then converted to a UTF-8 binary.

 input_value/0

 -type input_value() :: value() | unicode:charlist() | atom().

An input value, that is, a value that is then converted to a UTF-8 binary.

 key/0

 -type key() :: unicode:unicode_binary().

The type for the baggage key, which is a UTF-8 binary.

 metadata/0

 -type metadata() :: [unicode:unicode_binary() | {unicode:unicode_binary(), unicode:unicode_binary()}].

The type for the baggage metadata, which is a list of UTF-8 binaries or a list of tuples of UTF-8 binaries (as key-value pairs).

 t/0

 -type t() :: #{key() => {value(), metadata()}}.

The type for the baggage.

 value/0

 -type value() :: unicode:unicode_binary().

The type for the baggage value, which is a UTF-8 binary.

 Functions

 clear()

 -spec clear() -> ok.

Clears the baggage, removing all the current key-value pairs.

 clear(Ctx)

 -spec clear(otel_ctx:t()) -> otel_ctx:t().

Clears the baggage for the given context, removing all the current key-value pairs.

 get_all()

 -spec get_all() -> t().

Returns the baggage from the process dictionary.

 get_all(Ctx)

 -spec get_all(otel_ctx:t()) -> t().

Returns the baggage for the given context.

 set(KeyValues)

 -spec set(#{key() => value()} | [{key(), value()}]) -> ok.

Sets the given key-value pairs in the current baggage.
If you need to set metadata for the key-value pair, use set/3 instead.

 set(Key, Value)

 -spec set(otel_ctx:t() | input_key(),
 #{input_key() => input_value()} | [{input_key(), input_value()}] | input_value()) ->
 otel_ctx:t() | ok.

Sets the given key-value pair in the current baggage, or sets the given key-value pairs in the baggage for the given context.
Returns ok when using the set(Key, Value) form, or the updated context when using the set(Ctx, KeyValues) form.

 set(Key, Value, Metadata)

 -spec set(otel_ctx:t() | input_key(), input_key() | input_value(), input_value() | metadata()) ->
 otel_ctx:t() | ok.

Sets the given key-value pair in the current baggage (with the associated metadata), or sets the given key-value pair in the baggage for the given context.
Returns ok when using the set(Key, Value, Metadata) form, or the updated context when using the set(Ctx, Key, Value) form.

 set(Ctx, Key, Value, Metadata)

 -spec set(otel_ctx:t(), input_key(), input_value(), metadata()) -> otel_ctx:t().

Sets the given key-value pair in the baggage for the given context, with the associated metadata.
Returns the updated context.

 set_to(Ctx, KeyValues)

 -spec set_to(otel_ctx:t(), #{input_key() => input_value()} | [{input_key(), input_value()}]) ->
 otel_ctx:t().

Sets the given key-value pairs in the baggage for the given context.
Returns the updated context.

 set_to(Ctx, Key, Value)

 -spec set_to(otel_ctx:t(), input_key(), input_value()) -> otel_ctx:t().

Sets the given key-value pair in the baggage for the given context.
Returns the updated context.

 set_to(Ctx, Key, Value, Metadata)

 -spec set_to(otel_ctx:t(), input_key(), input_value(), metadata()) -> otel_ctx:t().

Sets the given key-value pair in the baggage for the given context, with the associated metadata.
Returns the updated context.

OpenTelemetry.Span

This module contains macros for Span operations that update the active current Span in the current process.
An example of creating an Event and adding it to the current Span:
require OpenTelemetry.Tracer, as: Tracer
require OpenTelemetry.Span, as: Span

span_ctx = Tracer.start_span("some-span")
...
Span.add_event(span_ctx, "ecto.query", query: query, total_time: total_time)
...
Span.end_span(span_ctx)
A Span represents a single operation within a trace. Spans can be nested to form a trace tree.
Each trace contains a root span, which typically describes the end-to-end latency and, optionally,
one or more sub-spans for its sub-operations.
Spans encapsulate:
	The span name
	An immutable SpanContext (OpenTelemetry.span_ctx/0) that uniquely identifies the Span
	A parent Span in the form of a Span (OpenTelemetry.span/0), SpanContext (OpenTelemetry.span_ctx/0), or undefined
	A start timestamp
	An end timestamp
	An ordered mapping of Attributes (OpenTelemetry.attributes_map/0)
	A list of Links to other Spans (OpenTelemetry.link/0)
	A list of timestamped Events (OpenTelemetry.event/0)
	A Status (OpenTelemetry.status/0)

See specification

 Summary

 Types

 start_config()

 start_opts()

 Functions

 add_event(span_ctx, event, attributes)

 Add an event to the currently active Span.

 add_events(span_ctx, events)

 Add a list of events to the currently active Span.

 end_span(span_ctx)

 End the Span. Sets the end timestamp for the currently active Span. This has no effect on any
child Spans that may exist of this Span.

 end_span(span_ctx, timestamp)

 End the Span. Sets the end timestamp for the currently active Span using the passed in timestamp if valid, current timestamp otherwise. This has no effect on any
child Spans that may exist of this Span.

 hex_span_ctx(span_ctx)

 Get the hex-encoded trace context.

 hex_span_id(span)

 Get the lowercase hex encoded span ID.

 hex_trace_id(span)

 Get the lowercase hex encoded trace ID.

 is_recording(span_ctx)

 Returns whether this Span is recording information like events, attributes, status, etc.

 is_valid(span_ctx)

 Returns true if the SpanContext has a non-zero TraceId and SpanId.

 record_exception(span_ctx, exception, trace \\ nil, attributes \\ [])

 Record an exception as an event, following the semantics convetions for exceptions.

 set_attribute(span_ctx, key, value)

 Set an attribute with key and value on the currently active Span.

 set_attributes(span_ctx, attributes)

 Add a list of attributes to the currently active Span.

 set_status(span_ctx, status)

 Sets the Status of the currently active Span.

 span_id(span)

 Get the SpanId of a Span.

 trace_id(span)

 Get the TraceId of a Span.

 tracestate(span)

 Get the Tracestate of a Span.

 update_name(span_ctx, name)

 Updates the Span name.

 Types

 start_config()

 @type start_config() :: :otel_span.start_config()

 start_opts()

 @type start_opts() :: :otel_span.start_opts()

 Functions

 add_event(span_ctx, event, attributes)

 @spec add_event(
 OpenTelemetry.span_ctx(),
 OpenTelemetry.event_name(),
 OpenTelemetry.attributes_map()
) :: boolean()

Add an event to the currently active Span.
See specification

 add_events(span_ctx, events)

 @spec add_events(OpenTelemetry.span_ctx(), [OpenTelemetry.event()]) :: boolean()

Add a list of events to the currently active Span.
See specification

 end_span(span_ctx)

End the Span. Sets the end timestamp for the currently active Span. This has no effect on any
child Spans that may exist of this Span.
The Span Context is returned with is_recording set to false.
See specification

 end_span(span_ctx, timestamp)

End the Span. Sets the end timestamp for the currently active Span using the passed in timestamp if valid, current timestamp otherwise. This has no effect on any
child Spans that may exist of this Span.
The Span Context is returned with is_recording set to false.
See specification

 hex_span_ctx(span_ctx)

 @spec hex_span_ctx(OpenTelemetry.span_ctx() | nil) ::
 %{
 otel_trace_id: OpenTelemetry.hex_trace_id(),
 otel_span_id: OpenTelemetry.hex_span_id(),
 otel_trace_flags: binary()
 }
 | %{}

Get the hex-encoded trace context.

 hex_span_id(span)

 @spec hex_span_id(OpenTelemetry.span_ctx()) :: OpenTelemetry.hex_span_id()

Get the lowercase hex encoded span ID.

 hex_trace_id(span)

 @spec hex_trace_id(OpenTelemetry.span_ctx()) :: OpenTelemetry.hex_trace_id()

Get the lowercase hex encoded trace ID.

 is_recording(span_ctx)

Returns whether this Span is recording information like events, attributes, status, etc.
See specification

 is_valid(span_ctx)

Returns true if the SpanContext has a non-zero TraceId and SpanId.
See specification

 record_exception(span_ctx, exception, trace \\ nil, attributes \\ [])

Record an exception as an event, following the semantics convetions for exceptions.
If trace is not provided, the stacktrace is retrieved from Process.info/2
See specification

 set_attribute(span_ctx, key, value)

 @spec set_attribute(
 OpenTelemetry.span_ctx(),
 OpenTelemetry.attribute_key(),
 OpenTelemetry.attribute_value()
) :: boolean()

Set an attribute with key and value on the currently active Span.
See specification

 set_attributes(span_ctx, attributes)

 @spec set_attributes(OpenTelemetry.span_ctx(), OpenTelemetry.attributes_map()) ::
 boolean()

Add a list of attributes to the currently active Span.
See specification

 set_status(span_ctx, status)

 @spec set_status(OpenTelemetry.span_ctx(), OpenTelemetry.status()) :: boolean()

Sets the Status of the currently active Span.
If used, this will override the default Span Status, which is :unset.
Valid statuses are :ok, or :error. Calling this will also set the
status_code attribute to 1(:ok), or 2(:error).
See specification

 span_id(span)

 @spec span_id(OpenTelemetry.span_ctx()) :: OpenTelemetry.span_id()

Get the SpanId of a Span.

 trace_id(span)

 @spec trace_id(OpenTelemetry.span_ctx()) :: OpenTelemetry.trace_id()

Get the TraceId of a Span.

 tracestate(span)

 @spec tracestate(OpenTelemetry.span_ctx()) :: OpenTelemetry.tracestate()

Get the Tracestate of a Span.

 update_name(span_ctx, name)

 @spec update_name(OpenTelemetry.span_ctx(), OpenTelemetry.span_name()) :: boolean()

Updates the Span name.
It is highly discouraged to update the name of a Span after its creation. Span name is
often used to group, filter and identify the logical groups of spans. And often, filtering
logic will be implemented before the Span creation for performance reasons. Thus the name
update may interfere with this logic.
The function name is called update_name to differentiate this function from the regular
property setter. It emphasizes that this operation signifies a major change for a Span
and may lead to re-calculation of sampling or filtering decisions made previously
depending on the implementation.
See specification

OpenTelemetry.Tracer

This module contains macros for Tracer operations around the lifecycle of the Spans within a Trace.
The Tracer is able to start a new Span as a child of the active Span of the current process, set
a different Span to be the current Span by passing the Span's context, end a Span or run a code
block within the context of a newly started span that is ended when the code block completes.
The macros start_span and with_span use the Tracer associated with the Application the module
is included in. These Tracers are created at boot time for each loaded Application.
require OpenTelemetry.Tracer, as: Tracer

Tracer.with_span "span-1" do
 ... do something ...
end
See specification

 Summary

 Functions

 add_event(event, attributes)

 Add an event to the currently active Span.

 add_events(events)

 Add a list of events to the currently active Span.

 current_span_ctx()

 Returns the currently active OpenTelemetry.span_ctx/0.

 current_span_ctx(ctx)

 Returns the OpenTelemetry.span_ctx/0 active in Context ctx.

 end_span(timestamp \\ :undefined)

 End the currently active Span and sets its end timestamp.
This has no effect on any child Spans that may exist of this Span.

 record_exception(exception, trace \\ nil, attributes \\ [])

 Record an exception as an event, following the semantics convetions for exceptions.

 set_attribute(key, value)

 Set an attribute with key and value on the currently active Span.

 set_attributes(attributes)

 Add a list of attributes to the currently active Span.

 set_current_span(span_ctx)

 Takes a OpenTelemetry.span_ctx/0 and the Tracer sets it to the currently active Span.

 set_current_span(ctx, span_ctx)

 Takes a OpenTelemetry.Ctx.t/0 and the OpenTelemetry.span_ctx/0 and the Tracer sets
it to the current span in the pass Context.

 set_status(status)

 Sets the Status of the currently active Span.

 set_status(code, message)

 Creates and sets the Status of the currently active Span.

 start_span(name, opts \\ quote do
 %{}
end)

 Starts a new span and does not make it the current active span of the current process.

 start_span(ctx, name, opts)

 Starts a new span and does not make it the current active span of the current process.

 update_name(name)

 Updates the Span name.

 with_span(name, start_opts \\ quote do
 %{}
end, list)

 Creates a new span which is set to the currently active Span in the Context of the block.
The Span is ended automatically when the block completes and the Context is what it was
before the block.

 with_span(ctx, name, start_opts, list)

 Creates a new span which is set to the currently active Span in the Context of the block.
The Span is ended automatically when the block completes and the Context is what it was
before the block.

 Functions

 add_event(event, attributes)

 @spec add_event(OpenTelemetry.event_name(), OpenTelemetry.attributes_map()) ::
 boolean()

Add an event to the currently active Span.
See specification

 add_events(events)

 @spec add_events([OpenTelemetry.event()]) :: boolean()

Add a list of events to the currently active Span.
See specification

 current_span_ctx()

Returns the currently active OpenTelemetry.span_ctx/0.
See specification

 current_span_ctx(ctx)

Returns the OpenTelemetry.span_ctx/0 active in Context ctx.
See specification

 end_span(timestamp \\ :undefined)

 @spec end_span(:opentelemetry.timestamp() | :undefined) ::
 :opentelemetry.span_ctx() | :undefined

End the currently active Span and sets its end timestamp.
This has no effect on any child Spans that may exist of this Span.
To end a specific span, see OpenTelemetry.Span.end_span/1.
The Span in the current Context has its is_recording set to false.
See specification

 record_exception(exception, trace \\ nil, attributes \\ [])

Record an exception as an event, following the semantics convetions for exceptions.
If trace is not provided, the stacktrace is retrieved from Process.info/2
See specification

 set_attribute(key, value)

 @spec set_attribute(OpenTelemetry.attribute_key(), OpenTelemetry.attribute_value()) ::
 boolean()

Set an attribute with key and value on the currently active Span.
See specification

 set_attributes(attributes)

 @spec set_attributes(OpenTelemetry.attributes_map()) :: boolean()

Add a list of attributes to the currently active Span.
See specification

 set_current_span(span_ctx)

Takes a OpenTelemetry.span_ctx/0 and the Tracer sets it to the currently active Span.
See specification

 set_current_span(ctx, span_ctx)

Takes a OpenTelemetry.Ctx.t/0 and the OpenTelemetry.span_ctx/0 and the Tracer sets
it to the current span in the pass Context.
See specification

 set_status(status)

 @spec set_status(OpenTelemetry.status()) :: boolean()

Sets the Status of the currently active Span.
If used, this will override the default Span Status, which is :unset.
See specification

 set_status(code, message)

 @spec set_status(OpenTelemetry.status_code(), String.t()) :: boolean()

Creates and sets the Status of the currently active Span.
If used, this will override the default Span Status, which is :unset.
See specification

 start_span(name, opts \\ quote do
 %{}
end)

 (macro)

Starts a new span and does not make it the current active span of the current process.
The current active Span is used as the parent of the created Span.
See specification

 start_span(ctx, name, opts)

 (macro)

Starts a new span and does not make it the current active span of the current process.
The current active Span is used as the parent of the created Span.
See specification

 update_name(name)

 @spec update_name(String.t()) :: boolean()

Updates the Span name.
It is highly discouraged to update the name of a Span after its creation. Span name is
often used to group, filter and identify the logical groups of spans. And often, filtering
logic will be implemented before the Span creation for performance reasons. Thus the name
update may interfere with this logic.
The function name is called update_name to differentiate this function from the regular
property setter. It emphasizes that this operation signifies a major change for a Span
and may lead to re-calculation of sampling or filtering decisions made previously
depending on the implementation.
See specification

 with_span(name, start_opts \\ quote do
 %{}
end, list)

 (macro)

Creates a new span which is set to the currently active Span in the Context of the block.
The Span is ended automatically when the block completes and the Context is what it was
before the block.
See start_span/2 and end_span/0.
See specification

 with_span(ctx, name, start_opts, list)

 (macro)

Creates a new span which is set to the currently active Span in the Context of the block.
The Span is ended automatically when the block completes and the Context is what it was
before the block.
See start_span/2 and end_span/0.
See specification

otel_tracer behaviour

 Summary

 Types

 traced_fun/1

 Callbacks

 start_span/4

 with_span/5

 Functions

 current_span_ctx()

 current_span_ctx(Ctx)

 from_remote_span(TraceId, SpanId, Traceflags)

 Returns a span_ctx record with is_recording set to false and is_remote set to true. This is mainly for use in propagators when they extract a Span to be used as a parent.

 non_recording_span(TraceId, SpanId, Traceflags)

 Returns a span_ctx record with is_recording set to false. This is mainly for use in propagators when they extract a Span to be used as a parent.

 set_current_span(SpanCtx)

 set_current_span(Ctx, SpanCtx)

 start_span(Tracer, SpanName, Opts)

 start_span(Ctx, Tracer, SpanName, Opts)

 update_logger_process_metadata(Ctx)

 with_span(Tracer, SpanName, Opts, Fun)

 with_span(Ctx, Tracer, SpanName, Opts, Fun)

 Types

 traced_fun/1

 -type traced_fun(T) :: fun((opentelemetry:span_ctx()) -> T).

 Callbacks

 start_span/4

 -callback start_span(otel_ctx:t(),
 opentelemetry:tracer(),
 opentelemetry:span_name(),
 otel_span:start_opts()) ->
 opentelemetry:span_ctx().

 with_span/5

 -callback with_span(otel_ctx:t(),
 opentelemetry:tracer(),
 opentelemetry:span_name(),
 otel_span:start_opts(),
 traced_fun(T)) ->
 T.

 Functions

 current_span_ctx()

 -spec current_span_ctx() -> opentelemetry:span_ctx() | undefined.

 current_span_ctx(Ctx)

 -spec current_span_ctx(otel_ctx:t()) -> opentelemetry:span_ctx() | undefined.

 from_remote_span(TraceId, SpanId, Traceflags)

 -spec from_remote_span(opentelemetry:trace_id(), opentelemetry:span_id(), opentelemetry:trace_flags()) ->
 opentelemetry:span_ctx().

Returns a span_ctx record with is_recording set to false and is_remote set to true. This is mainly for use in propagators when they extract a Span to be used as a parent.

 non_recording_span(TraceId, SpanId, Traceflags)

 -spec non_recording_span(opentelemetry:trace_id(), opentelemetry:span_id(), opentelemetry:trace_flags()) ->
 opentelemetry:span_ctx().

Returns a span_ctx record with is_recording set to false. This is mainly for use in propagators when they extract a Span to be used as a parent.

 set_current_span(SpanCtx)

 -spec set_current_span(opentelemetry:span_ctx() | undefined) -> opentelemetry:span_ctx() | undefined.

 set_current_span(Ctx, SpanCtx)

 -spec set_current_span(otel_ctx:t(), opentelemetry:span_ctx() | undefined) -> otel_ctx:t().

 start_span(Tracer, SpanName, Opts)

 -spec start_span(opentelemetry:tracer(), opentelemetry:span_name(), otel_span:start_opts()) ->
 opentelemetry:span_ctx().

 start_span(Ctx, Tracer, SpanName, Opts)

 -spec start_span(otel_ctx:t(),
 opentelemetry:tracer(),
 opentelemetry:span_name(),
 otel_span:start_opts()) ->
 opentelemetry:span_ctx().

 update_logger_process_metadata(Ctx)

 with_span(Tracer, SpanName, Opts, Fun)

 -spec with_span(opentelemetry:tracer(),
 opentelemetry:span_name(),
 otel_span:start_opts(),
 traced_fun(T)) ->
 T.

 with_span(Ctx, Tracer, SpanName, Opts, Fun)

 -spec with_span(otel_ctx:t(),
 opentelemetry:tracer(),
 opentelemetry:span_name(),
 otel_span:start_opts(),
 traced_fun(T)) ->
 T.

otel_tracer_noop

 Summary

 Functions

 end_span(_, _)

 noop_span_ctx()

 start_span(Ctx, _, SpanName, _)

 with_span(Ctx, Tracer, SpanName, Opts, Fun)

 Functions

 end_span(_, _)

 -spec end_span(opentelemetry:tracer(), opentelemetry:span_ctx()) -> boolean() | {error, term()}.

 noop_span_ctx()

 -spec noop_span_ctx() -> opentelemetry:span_ctx().

 start_span(Ctx, _, SpanName, _)

 -spec start_span(otel_ctx:t(),
 opentelemetry:tracer(),
 opentelemetry:span_name(),
 otel_span:start_config()) ->
 opentelemetry:span_ctx().

 with_span(Ctx, Tracer, SpanName, Opts, Fun)

 -spec with_span(otel_ctx:t(),
 opentelemetry:tracer(),
 opentelemetry:span_name(),
 otel_span:start_config(),
 otel_tracer:traced_fun(T)) ->
 T.

otel_tracer_provider

This module defines the API for a TracerProvider. A TracerProvider stores Tracer configuration and is how Tracers are accessed. An implementation must be a gen_server that handles the API's calls. The SDK should register a TracerProvider with the name otel_tracer_provider which is used as the default global Provider.

 Summary

 Functions

 force_flush()

 force_flush(ServerRef)

 get_tracer(Name, Vsn, SchemaUrl)

 get_tracer(ServerRef, Name, Vsn, SchemaUrl)

 resource()

 resource(ServerRef)

 start(Name, Config)

 deprecated

 Functions

 force_flush()

 -spec force_flush() -> ok | {error, term()} | timeout.

 force_flush(ServerRef)

 -spec force_flush(atom() | pid()) -> ok | {error, term()} | timeout.

 get_tracer(Name, Vsn, SchemaUrl)

 -spec get_tracer(Name, Vsn, SchemaUrl) -> Tracer
 when
 Name :: atom(),
 Vsn :: unicode:chardata() | undefined,
 SchemaUrl :: uri_string:uri_string() | undefined,
 Tracer :: opentelemetry:tracer().

 get_tracer(ServerRef, Name, Vsn, SchemaUrl)

 -spec get_tracer(ServerRef, Name, Vsn, SchemaUrl) -> Tracer
 when
 ServerRef :: atom() | pid() | string(),
 Name :: atom(),
 Vsn :: unicode:chardata() | undefined,
 SchemaUrl :: uri_string:uri_string() | undefined,
 Tracer :: opentelemetry:tracer().

 resource()

 -spec resource() -> term() | undefined.

 resource(ServerRef)

 -spec resource(atom() | pid() | string()) -> term() | undefined.

 start(Name, Config)

 This function is deprecated. Start the TracerProvider through the SDK.

otel_tracestate

tracestate provides additional vendor-specific trace identification information across different distributed tracing systems. It represents an immutable list consisting of key/value pairs, each pair is referred to as a list-member.
Keys and values are strings of up to 256 printable US-ASCII characters, conforming to the W3C spec https://www.w3.org/TR/trace-context/#tracestate-field

 Summary

 Types

 members/0

 t/0

 Functions

 add(Key, Value, Tracestate)

 decode_header(Value)

 encode_header(Tracestate)

 get(Key, Tracestate)

 new()

 new(List)

 remove(Key, Tracestate)

 update(Key, Value, Tracestate)

 Types

 members/0

 -type members() :: [{unicode:latin1_chardata(), unicode:latin1_chardata()}].

 t/0

 -type t() :: #tracestate{members :: members()}.

 Functions

 add(Key, Value, Tracestate)

 -spec add(unicode:latin1_chardata(), unicode:latin1_chardata(), t()) -> t().

 decode_header(Value)

 -spec decode_header(unicode:latin1_binary() | undefined) -> t().

 encode_header(Tracestate)

 -spec encode_header(t()) -> unicode:latin1_binary().

 get(Key, Tracestate)

 -spec get(unicode:latin1_chardata(), t()) -> unicode:latin1_chardata().

 new()

 -spec new() -> t().

 new(List)

 -spec new([{unicode:latin1_chardata(), unicode:latin1_chardata()}]) -> t().

 remove(Key, Tracestate)

 -spec remove(unicode:latin1_chardata(), t()) -> t().

 update(Key, Value, Tracestate)

 -spec update(unicode:latin1_chardata(), unicode:latin1_chardata(), t()) -> t().

otel_propagator behaviour

A Propagator injects or extracts data from a Context so information like baggage and trace context can be transported along with cross service requests, like an HTTP request.
Propagators are defined based on the type of encoding they inject and extract. At this time there is only a TextMapPropagator, otel_propagator_text_map, which works on ASCII keys and values.
This behaviour is only for defining the callbacks used by each propagator per type and is only used by developers adding a new type of propagator (like for binary protocols), not implementations of propagators themselves (like B3 or W3C TraceContext).
Users configure and call propagators based on their type. See the docs for otel_propagator_text_map for more details.

 Summary

 Types

 builtin/0

 A built-in propagator.

 carrier/0

 A carrier, which can be any type.

 t/0

 A propagator, which can be a built-in propagator, a module, or a module and associated term.

 Callbacks

 extract/2

 Extracts a value from a carrier.

 extract_to/3

 Extracts a value from a carrier into a context.

 inject/2

 Sets a value into a carrier.

 inject_from/3

 Sets a value from a context into a carrier.

 Types

 builtin/0

 -type builtin() :: trace_context | tracecontext | b3 | b3multi | baggage.

A built-in propagator.

 carrier/0

 -type carrier() :: term().

A carrier, which can be any type.

 t/0

 -type t() :: builtin() | module() | {module(), term()}.

A propagator, which can be a built-in propagator, a module, or a module and associated term.

 Callbacks

 extract/2

 -callback extract(t(), carrier()) -> otel_ctx:t() | otel_ctx:token().

Extracts a value from a carrier.

 extract_to/3

 -callback extract_to(otel_ctx:t(), t(), carrier()) -> otel_ctx:t().

Extracts a value from a carrier into a context.

 inject/2

 -callback inject(t(), carrier()) -> carrier().

Sets a value into a carrier.

 inject_from/3

 -callback inject_from(otel_ctx:t(), t(), carrier()) -> carrier().

Sets a value from a context into a carrier.

otel_propagator_b3

An implementation of otel_propagator_text_map that injects and extracts trace context using the B3 specification from Zipkin.
Since trace_context and baggage are the two default propagators, the global TextMap Propagators must be configured if B3 is to be used for propagation:
 {text_map_propagators, [b3, baggage]},
To use B3 multi-header format use:
 {text_map_propagators, [b3multi, baggage]},
 CompositePropagator = otel_propagator_text_map_composite:create([b3, baggage]),
 opentelemetry:set_text_map_propagator(CompositePropagator).
It is also possible to set a separate list of injectors or extractors. For example, if the service should extract B3 encoded context but you only want to inject context encoded with the W3C TraceContext format (maybe you have some services only supporting B3 that are making requests to your server but you have no reason to continue propagating in both formats when communicating to other services further down the stack). In that case you would instead set configuration like:
 {text_map_extractors, [b3, trace_context, baggage]},
 {text_map_injectors, [trace_context, baggage]},
Or using calls to opentelemetry at runtime:
 B3CompositePropagator = otel_propagator_text_map_composite:create([b3, trace_context, baggage]),
 CompositePropagator = otel_propagator_text_map_composite:create([trace_context, baggage]),
 opentelemetry:set_text_map_extractor(B3CompositePropagator),
 opentelemetry:set_text_map_injector(CompositePropagator).

otel_propagator_b3multi

An implementation of otel_propagator_text_map that injects and extracts trace context using the B3 multi header format specification from Zipkin.
See also: otel_propagator_b3.

otel_propagator_b3single

An implementation of otel_propagator_text_map that injects and extracts trace context using the B3 single header format specification from Zipkin.
See also: otel_propagator_b3.

otel_propagator_baggage

An implementation of otel_propagator_text_map that injects and extracts baggage using the W3C Baggage format.
This propagator along with otel_propagator_trace_context are used by default. The global TextMap Propagators can be configured in the application environment:
 {text_map_propagators, [trace_context, baggage]},
Or by calling opentelemetry:set_text_map_propagator/1.

otel_propagator_text_map behaviour

A TextMap Propagator is a Propagator that performs injection and extraction with ASCII keys and values.
An example of configuring the TextMap Propagator to inject and extract Baggage and TraceContext:
 {text_map_propagators, [trace_context, baggage]},
The propagators are then used at the points that cross-service communication is performed. By default, inject/2 and extract/2 work on a generic list of 2-tuple's with binary string keys and values. You can pass (as an argument) a user-defined function for setting a key/value in the carrier and for getting the value of a key. For example, injecting and extracting to and from Hackney headers could be done with Hackney-specific functions:
 set_header(Key, Value, Headers) ->
 hackney_headers:store(Key, Value, Headers).

 some_fun_calling_hackney() ->
 Headers = otel_propagator_text_map:inject(opentelemetry:get_text_map_injector(), hackney_headers:new(), fun set_header/2),
 %% ...
An example of extraction in an Elli request handler:
 get_header(Req, Key) ->
 elli_request:get_header(Key, Req, Default).

 handle(Req, _Args) ->
 otel_propagator_text_map:extract(Req, fun get_header/2),
 %% ...
 {ok, [], <<"hello world">>}.

 Summary

 Types

 carrier_get/0

 carrier_keys/0

 carrier_set/0

 default_text_map_carrier/0

 field_key/0

 field_value/0

 propagator_options/0

 t/0

 Callbacks

 extract/5

 fields/1

 inject/4

 Functions

 extract(Carrier)

 Extracts the current context from the provided Carrier using the current TextMap Propagator.

 extract(Propagator, Carrier)

 Extracts the current context from the provided Carrier using the given Propagator.

 extract(Propagator, Carrier, CarrierKeysFun, CarrierGetFun)

 Extracts the current context from the provided Carrier using the given Propagator and functions to get all the keys and get the keys from the carrier.

 extract_to(Context, Carrier)

 Equivalent to extract_to(Context, opentelemetry:get_text_map_extractor(), Carrier).

 extract_to(Context, Propagator, Carrier)

 Equivalent to extract_to(Context, Propagator, Carrier, fun default_carrier_keys/1, fun default_carrier_get/2).

 extract_to(Context, Propagator, Carrier, CarrierKeysFun, CarrierGetFun)

 Extracts the current context from the provided Carrier using the given Propagator and functions to get all the keys and get the keys from the carrier.

 inject(Carrier)

 Injects Carrier into the current context using the current TextMap Propagator.

 inject(Propagator, Carrier)

 Injects Carrier into the current context using the provided Propagator.

 inject(Propagator, Carrier, CarrierSetFun)

 Injects Carrier (through CarrierSetFun) into the current context using the provided Propagator.

 inject_from(Context, Carrier)

 Equivalent to inject_from(Context, opentelemetry:get_text_map_injector(), Carrier).

 inject_from(Context, Propagator, Carrier)

 Equivalent to inject_from(Context, Propagator, Carrier, fun default_carrier_set/3).

 inject_from(Context, Propagator, Carrier, CarrierSetFun)

 Injects Carrier (through CarrierSetFun) into the given Context using the provided propagator Propagator.

 Types

 carrier_get/0

 -type carrier_get() ::
 fun((unicode:latin1_binary(), otel_propagator:carrier()) ->
 unicode:latin1_binary() | undefined).

 carrier_keys/0

 -type carrier_keys() :: fun((otel_propagator:carrier()) -> [unicode:latin1_binary()]).

 carrier_set/0

 -type carrier_set() ::
 fun((unicode:latin1_binary(), unicode:latin1_binary(), otel_propagator:carrier()) ->
 otel_propagator:carrier()).

 default_text_map_carrier/0

 -type default_text_map_carrier() :: [{unicode:latin1_binary(), unicode:latin1_binary()}].

 field_key/0

 -type field_key() :: unicode:latin1_binary().

 field_value/0

 -type field_value() :: unicode:latin1_binary().

 propagator_options/0

 -type propagator_options() :: term().

 t/0

 -type t() :: module() | {module(), propagator_options()}.

 Callbacks

 extract/5

 -callback extract(otel_ctx:t(),
 otel_propagator:carrier(),
 carrier_keys(),
 carrier_get(),
 propagator_options()) ->
 term().

 fields/1

 -callback fields(propagator_options()) -> [field_key()].

 inject/4

 -callback inject(otel_ctx:t(), otel_propagator:carrier(), carrier_set(), propagator_options()) ->
 otel_propagator:carrier().

 Functions

 extract(Carrier)

 -spec extract(otel_propagator:carrier()) -> otel_ctx:token().

Extracts the current context from the provided Carrier using the current TextMap Propagator.

 extract(Propagator, Carrier)

 -spec extract(otel_propagator:t(), otel_propagator:carrier()) -> otel_ctx:token().

Extracts the current context from the provided Carrier using the given Propagator.

 extract(Propagator, Carrier, CarrierKeysFun, CarrierGetFun)

 -spec extract(otel_propagator:t(), otel_propagator:carrier(), fun(), fun()) -> otel_ctx:token().

Extracts the current context from the provided Carrier using the given Propagator and functions to get all the keys and get the keys from the carrier.

 extract_to(Context, Carrier)

 -spec extract_to(otel_ctx:t(), otel_propagator:carrier()) -> otel_ctx:t().

Equivalent to extract_to(Context, opentelemetry:get_text_map_extractor(), Carrier).

 extract_to(Context, Propagator, Carrier)

 -spec extract_to(otel_ctx:t(), otel_propagator:t(), otel_propagator:carrier()) -> otel_ctx:t().

Equivalent to extract_to(Context, Propagator, Carrier, fun default_carrier_keys/1, fun default_carrier_get/2).

 extract_to(Context, Propagator, Carrier, CarrierKeysFun, CarrierGetFun)

 -spec extract_to(otel_ctx:t(), otel_propagator:t(), otel_propagator:carrier(), fun(), fun()) ->
 otel_ctx:t().

Extracts the current context from the provided Carrier using the given Propagator and functions to get all the keys and get the keys from the carrier.

 inject(Carrier)

 -spec inject(otel_propagator:carrier()) -> otel_propagator:carrier().

Injects Carrier into the current context using the current TextMap Propagator.
See also: inject/2.

 inject(Propagator, Carrier)

 -spec inject(otel_propagator:t(), otel_propagator:carrier()) -> otel_propagator:carrier().

Injects Carrier into the current context using the provided Propagator.
By default, the Carrier is set using the a default carrier set function.
See also: inject/3.

 inject(Propagator, Carrier, CarrierSetFun)

 -spec inject(otel_propagator:t(), otel_propagator:carrier(), fun()) -> otel_propagator:carrier().

Injects Carrier (through CarrierSetFun) into the current context using the provided Propagator.

 inject_from(Context, Carrier)

 -spec inject_from(otel_ctx:t(), otel_propagator:carrier()) -> otel_propagator:carrier().

Equivalent to inject_from(Context, opentelemetry:get_text_map_injector(), Carrier).

 inject_from(Context, Propagator, Carrier)

 -spec inject_from(otel_ctx:t(), otel_propagator:t(), otel_propagator:carrier()) ->
 otel_propagator:carrier().

Equivalent to inject_from(Context, Propagator, Carrier, fun default_carrier_set/3).

 inject_from(Context, Propagator, Carrier, CarrierSetFun)

 -spec inject_from(otel_ctx:t(), otel_propagator:t(), otel_propagator:carrier(), fun()) ->
 otel_propagator:carrier().

Injects Carrier (through CarrierSetFun) into the given Context using the provided propagator Propagator.

otel_propagator_text_map_composite

A Composite TextMap Propagator is a Propagator that performs run multiple TextMap Propagators in a specified order.
An example of creating a Composite TextMap Propagator to inject and extract Baggage and TraceContext:
 Propagator = otel_propagator_text_map_composite:create([trace_context, baggage]),
 otel_propagator_text_map:extract(Propagator, Carrier)

 Summary

 Functions

 create(Propagators)

 Create a new Composite TextMap Propagator.

 Functions

 create(Propagators)

 -spec create([otel_propagator:builtin()]) -> otel_propagator:t().

Create a new Composite TextMap Propagator.
The Propagators list is a list of atoms that represent the suffix of the module name of the TextMap Propagator to be used.

otel_propagator_text_map_noop

This no-op TextMap Propagator makes no changes to the context or the carrier when doing an extract or inject call.

otel_propagator_trace_context

An implementation of otel_propagator_text_map that injects and extracts trace context using the W3C TraceContext format.
This propagator along with otel_propagator_baggage are used by default. The global TextMap Propagators can be configured in the application environment:
 {text_map_propagators, [trace_context, baggage]},
Or by calling opentelemetry:set_text_map_propagator/1.

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

